怎么用刘维尔定理证明一个积分不可积

发布网友 发布时间:2024-10-24 18:08

我来回答

1个回答

热心网友 时间:2024-10-25 00:11

用刘维尔定理证明一个积分不可积往往比较困难。用刘维尔第三、第四定理可以证明∫e^(kx²)dx(k≠0)、∫e^(kx)/x dx(k≠0)、∫sinx/xdx、∫cosx/xdx、∫sin(x²)dx、∫cos(x²)dx等积分无法表示为初等函数。

追问有限平面上无极点什么意思?为什么刘维尔第三定理也跟正弦余弦有关

追答极点这个概念是复变函数中的,对此我不是很了解。事实上也可以不使用极点来判断,可以证明R(x)一定是一个多项式,然后如图片上所说,这是不可能的,从而∫e^(kx²)dx(k≠0)无法表示为初等函数。由欧拉公式,sinx=(e^ix-e^(-ix))/2i,cosx=(e^ix+e^(-ix))/2,所以∫sinx/xdx、∫cosx/xdx、∫sin(x²)dx、∫cos(x²)dx等积分也可以用刘维尔定理(第四定理)判别。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com