...x)(a>0),且f(x)在[0,,1]上的最小值为g(a),试求g(a)的表达式,并求g...

发布网友 发布时间:2024-10-24 12:29

我来回答

1个回答

热心网友 时间:2024-11-06 17:03

由于 f(x)=ax+(1/a) (1-x)=[(a^2-1)/a]x+1/a

故,下对x的系数(a^2-1)/a进行讨论:

当系数(a^2-1)/a=0时,即 a=1时:
f(x)=1/a,则f(x)的最小值=f(x)的最大值=g(a)=1/a=1
当系数(a^2-1)/a>0时,即a>1时:
f(x)为单调递增的一次函数,
则f(x)的最小值=f(0)=1/a=g(a)
f(x)的最大值=f(1)=a
由于g(a)=1/a,为单调递减的双曲函数,
当a趋近于0时,g(a)无限趋近于正无穷,故g(a)无最大值
当系数(a^2-1)/a<0时,即0<a<1时:
f(x)为单调递减的一次函数,
则f(x)的最小值=f(1)=a=g(a)
f(x)的最大值=f(0)=1/a
而g(a)=a ,为单调递增的一次函数,
0<a<1,a无最大值 故g(a)无最大值!
综上所述:
当0<a<1时,f(x)的最小值=g(a)=1/a,g(a)无最大值;
当a=1 时,f(x)的最小值=g(a)=1/a=1
当a>1 时,f(x)的最小值=g(a)=a,g(a)无最大值;

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com