您的当前位置:首页正文

专用铣床液压系统课程设计.

2020-10-24 来源:布克知识网
.

芜湖广播电视大学

机械设计制造及其自动化专业(本科) 《液压气动控制技术 》课程设计

班级: 15机械(春) 学号: 1534001217609 姓名: 卜宏辉 日期: 2016-11-13

.

.

目录

一、题目 …………………………………………………………………………(3) 专用铣床动力滑台的设计 ………………………………………………(3) 二、液压系统设计计算 ………………………………………………………(3) (一)设计要求及工况分析 ……………………………………………(3) 1、设计要求 ………………………………………………………(3)

2、负载与运动分析 ……………………………………………(3) (1)工作负载 …………………………………………………(1) (2)摩擦负载 ……………………………………………………(1) (3)惯性负载 ………………………………………………………(4) (4)液压缸在工作过程中各阶段的负载…………………………… (4) ( 5 ) 运动时间 ……………………………………………………(4)

(二)确定液压系统主要参数 ………………………………………………(6) 1、初选液压缸工作压力 ……………………………………………(6) 2、计算液压缸主要尺寸 ……………………………………………(6) (三)拟定液压系统原理图 …………………………………………………(10) 1、选择基本回路 …………………………………………………(10)

(1)选择调速回路 …………………………………………………(10) (2)选择油源形式 …………………………………………………(11) (3)选择快速运动和换向回路 ……………………………………(11) (4)选择速度换接回路 …………………………………………(11) (5)选择调压和卸荷回路 ………………………………………(11)

2、组成液压系统 ……………………………………………………(12) (四)计算和选择液压元件 …………………………………………………(13) 1、确定液压泵的规格和电动机功率 …………………………………(13)

(1)计算液压泵的最大工作压力 ………………………………(13) (2)计算液压泵的流量 …………………………………………(14) (3)确定液压泵的规格和电动机功率 ……………………………(14)

.

.

一、题目

要求设计一专用铣床,工作台要求完成快进→工作进给→快退→停止的自动工作循环。铣床工作台总重量为4000N,工件夹具重量为1500N,铣削阻力最大为9000N,工作台快进、快退速度为4.5m/min、工进速度为0.06~1m/min,往复运动加、减速时间为0.05s,工作台采用平导轨、静摩擦分别为 fs =0.2,fd=0.1,工作台快进行程为0.3m。工进行程为0.1m,试设计该机床的液压系统。 二、液压系统设计计算 (一)、设计要求及工况分析 1.设计要求

其动力滑台实现的工作循环是:快进→工进→快退→停止。主要参数与性能要求如下:切削阻力FL=9000N;运动部件所受重力G=5500N;快进、快退速度1= 3 =0.075m/min,工进速度2 =1000mm/min;快进行程L1=0.3mm,工进行程L2=0.1mm;往复运动的加速、减速时间Δt=0.05s;工作台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。 2.负载与运动分析

(1) 工作负载 工作负载即为切削阻力FL=9000N。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力

FFSSG0.255001100N 动摩擦阻力

.

.

FfddG0.15500550N (3) 惯性负载

Fi 

5500 4.5 G   N N 842 g t9 . 8 0 . 05×60

(4) 运动时间 快进 t1工进 t2L10.34s v10.075L20.1100s v20.001L1L2400103快退 t35.3s

v34.5/60

设液压缸的机械效率ηcm=0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。

表1液压缸各阶段的负载和推力

液压缸负载工况 启 动 加 速 快 进 工 进 反向启动 负载组成 F/N FFFs液压缸推力F0=F/ηcm/N 1222 1547 611 20611 1222 1100 1392 550 9550 1100 FFfd FFfdFi FFfdFL FFfs .

.

加 速 快 退

FFfdFi FFfd 1392 550 1547 611 根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F-t 和速度循环图-t,如下图所示。

液压缸的负载图

液压缸的速度图

.

.

(二) 确定液压系统主要参数 1.初选液压缸工作压力

所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸的工作压力p1=3MPa。 2.计算液压缸主要尺寸

鉴于动力滑台快进和快退速度相等,这里的液压缸可选用单活塞杆式差动液压缸(A1=2A2),快进时液压缸差动连接。工进时为防止车铣时负载突然消失发生前冲现象,液压缸的回油腔应有背压,参考表4选此背压为p2=0.6MPa。

表2 负载和工作压力之间的关系

负载 F/ KN 工作压力p/MPa <5 <0.8~1 5~10 1.5~2 10~20 2.5~3 20~30 3~4 30~50 4~5 >50 ≥5 .

.

表3 各种机械常用的系统工作压力

农业机械 、液压机、重型机械 类型 辅助机构 工作 压力 p/MPa 0.8~2 3~5 2~8 8~10 10~18 20~32 运输机械 磨床 组合机床 龙门刨床 拉床 械、工程机械挖掘机、起重小型工程机机械、大中型

表4 执行元件背压力的估计值

系统型类背压力Pb/MPa 0.2~0.5 系统 回油路调速阀的系统 回油路带背压阀的系统 带补油泵的闭式回路 回油路较复杂的工程机械 回油路较短且直接回油 0.4~0.6 0.5~1.5 0.8~1.5 1.2~3 可忽略不计 简单系统或轻载节流调速

表5 按工作压力选取d/D 工作压力/MPa ≤5.0 0.5~0.55

5.0~7.0 0.62~0.70 ≥7.0 0.7 d/D .

.

表6 按速比要求确定d/D 2/1 d/D 注:1—无杆腔进油时活塞运动速度;

1.15 0.3 1.25 0.4 1.33 0.5 1.46 0.55 1.61 0.62 2 0.71 2

—有杆腔进油时活塞运动速度。

由式

p1A1p2A2Fcm

A1 

9550  3 m 2 m 2  3.9 10

p 0 . 6 6  ( p  2 ) 0 .9  ( 3  )  10

cm 1 2

2

F

则活塞直径

D 

4 A1

3 4  3.9 10 

m  0 . 707 m  70.7mm

参考表5及表6,得d 0.5D =35.35mm,圆整后取标准数值得 D=71mm, d=36mm。

由此求得液压缸两腔的实际有效面积为:

A1=πD/4=3.96×10m

2

2

-32

2-32

A2=π(D-d)/4=2.94×10m

根据计算出的液压缸的尺寸,可估算出液压缸在工作循环中各阶段的压力、流量和功率,如表7所列,由此绘制的液压缸工况图如图2所示。

.

.

表7液压缸在各阶段的压力、流量和功率值 工况 推力 回油腔进油腔压压力 力 输入流量 输入功率 计算公式 F0/N p2/MPa p1/MPa q×10-3/m3/s P/KW 快进 启122动 2 加154速 7 恒速 — 1.19 2.7 1.79 — — 0.22 — — 39.47 p1F0A2PA1A2 p1+Δp q(A1A2)1 611 p1+Δp Pp1q 工进 10611 0.6 — 0.5 0.5 2.68 0.49 0.53 0.21 0.396×10-2 — — 0.22 p10.016 — — 0.046 F0p2A2A1 qA12 Pp1q 启122动 2 快加154退 速 7 恒611 速 p1F0p2A1A2 qA23 Pp1q 注:1. Δp为液压缸差动连接时,回油口到进油口之间的压力损失,取Δp=0.5MPa。

2. 快退时,液压缸有杆腔进油,压力为p1,无杆腔回油,

压力为p2。

.

.

(三) 拟定液压系统原理图 1.选择基本回路

图1

(1) 选择调速回路 由图1可知,这台机床液压系统功率较小,滑台运动速度低,工作负载为阻力负载且工作中变化小,故可选用进口节流调速回路。为防止铣完工件时负载突然消失引起运动部件前冲,在回油路上加背压阀。由于系统选用节流调速方式,系统必然为开式循环系统。

.

.

(2) 选择油源形式 从工况图可以清楚看出,在工作循环内,液压缸要求油源提供快进、快退行程的低压大流量和工进行程的高压小流量的油液。最大流量与最小流量之比qmax/qmin=0.22/(0.396×10-2)56;其相应的时间之比(t1+t3)/t2=(4+5.33)/100=0.0933。这表明在一个工作循环中的大部分时间都处于高压小流量工作。从提高系统效率、节省能量角度来看,选用单定量泵油源显然是不合理的,为此可选用限压式变量泵或双联叶片泵作为油源。考虑到前者流量突变时液压冲击较大,工作平稳性差,且后者可双泵同时向液压缸供油实现快速运动,最后确定选用双联叶片泵方案,如图2a所示。

(3) 选择快速运动和换向回路 本系统已选定液压缸差动连接和双泵供油两种快速运动回路实现快速运动。考虑到从工进转快退时回油路流量较大,故选用换向时间可调的电液换向阀式换向回路,以减小液压冲击。由于要实现液压缸差动连接,所以选用三位五通电液换向阀,如图2b所示。

(4) 选择速度换接回路 由于本系统滑台由快进转为工进时,速度变化大(1/2=0.075/0.00175),为减少速度换接时的液压冲击,选用行程阀控制的换接回路,如图2c所示。

(5) 选择调压和卸荷回路 在双泵供油的油源形式确定后,调压和卸荷问题都已基本解决。即滑台工进时,高压小流量泵的出口压力由油源中的溢流阀调定,无需另设调压回路。在滑台工进和停止时,低压大流量泵通过液控顺序阀卸荷,高压小流量泵在滑台停止时虽未卸

.

.

荷,但功率损失较小,故可不需再设卸荷回路。

.

.

图3 整理后的液压系统原理图

2.组成液压系统

将上面选出的液压基本回路组合在一起,并经修改和完善,就可得到完整的液压系统工作原理图,如图3所示。在图3中,为了解决滑台工进时进、回油路串通使系统压力无法建立的问题,增设了单向阀6。为了避免机床停止工作时回路中的油液流回油箱,导致空气进入系统,影响滑台运动的平稳性,图中添置了一个单向阀13。图中增设了一个压力继电器14。当滑台碰上死挡块后,系统压力升高,它发出快退信号,操纵电液换向阀换向。

(四)计算和选择液压件

.

.

1.确定液压泵的规格和电动机功率 (1) 计算液压泵的最大工作压力

小流量泵在快进和工进时都向液压缸供油,由表7可知,液压缸在工进时工作压力最大,最大工作压力为p1=2.68MPa,如在调速阀进口节流调速回路中,选取进油路上的总压力损失∑∆p=0.6MPa,考虑到压力继电器的可靠动作要求压差pe=0.5MPa,则小流量泵的最高工作压力估算为

≧p1+∑△p+△

=2.68+0.6+0.5=3.78 MPa 大流量泵只在快进和快退时向液压缸供油,由表7可见,快退时液压缸的工作压力为p1=2.7MPa,比快进时大。考虑到快退时进油不通过调速阀,故其进油路压力损失比前者小,现取进油路上的总压力损失∑∆p=0.3MPa,则大流量泵的最高工作压力估算为

≧p1+∑△p=2.7+0.3=3 MPa

(2) 计算液压泵的流量

由表7可知,油源向液压缸输入的最大流量为0.4×10-3 m3/s ,若取回路泄漏系数K=1.1,则两个泵的总流量为

≧K

=1.1×0.2×10 m/s =0.22×10 m/s =13.2L/min

-3

3

-3

3

考虑到溢流阀的最小稳定流量为3L/min,工进时的流量为0.396×10-5 m3/s =0.2L/min,则小流量泵的流量最少应为3.2L/min。

(3) 确定液压泵的规格和电动机功率

.

.

根据以上压力和流量数值查阅产品样本,并考虑液压泵存在容积损失,最后确定选取PV2R12-6/33型双联叶片泵。其小流量泵和大流量泵的排量分别为6mL/r和33mL/r,当液压泵的转速np=940r/min时,其理论流量分别为5.6 L/min和31L/min,若取液压泵容积效率ηv=0.9,则液压泵的实际输出流量为

qpqp1qp269400.9/1000339400.9/1000L/min5.127.9L/min33L/min

由于液压缸在快退时输入功率最大,若取液压泵总效率ηp=0.8,这时液压泵的驱动电动机功率为

Pppqpp1.7310633103KW1.19KW3600.810

根据此数值查阅产品样本,选用规格相近的Y100L—6型电动机,其额定功率为1.5KW,额定转速为940r/min。 2.确定其他元件及辅件 (1)确定阀类元件及辅件

根据系统的最高工作压力和通过各阀类元件及辅件的实际流量,查阅产品样本,选出的阀类元件和辅件规格如表8所列。其中,溢流阀9按小流量泵的额定流量选取,调速阀4选用Q-6B型,其最小稳定流量为0.03L/min,小于本系统工进时的流量0.5L/min。

表8液压元件规格及型号

.

.

元件序号 名称 双联最大流量 额定流量L/min 额定压力型号规格 MPa 额定压降 1 叶片泵 三位五通---- 5.1/27.9* 16 PV2R12-6/33 ---- 2 电液阀 行程70 100 6.3 35DYF3Y-E10B 0.3 3 阀 调速62.3 100 6.3 22C-100BH 0.3 4 阀 单向<1 6 6.3 Q-6B ---- 5 阀 单向70 100 6.3 I-100B 0.2 6 阀 液控29.3 100 6.3 I-100B 0.2 7 顺序阀 背压28.1 63 6.3 XY-63B 0.3 8 阀 .

<1 10 6.3 B-10B ---- .

溢流9 阀 单向5.1 10 6.3 Y-10B ---- 10 阀 滤油27.9 100 6.3 I-100B 0.2 11 器 压力36.6 80 6.3 XU--80×200 0.02 12 表开关 ---- ---- ---- K-6B ---- 13 单向70 阀 压力100 6.3 I-100B 0.2 14 继电器 ---- ---- 14 PF-B8L ---- *此为电动机额定转速为940时的流量r/min (2)确定油管

在选定了液压泵后,液压缸在实际快进、工进和快退运动阶段的运动速度、时间以及进入和流出液压缸的流量,与原定数值不同,重新计算的结果如表9所列。

表9各工况实际运动速度、时间和流量

快进 工进 快退 .

.

q1=(A1qp)/(A1-A2`) 207.1 L/min q2=(A2q1)/A1 =74.1 L/min V1= qp/(A1-A2`)=0.539m/s V2= q1/A1=0.0021 m/s T1=0.3/0.075=4s q1=0.22 L/min q1=qp1+ qp2=33 L/min q2=(A2q1)/A1 =47.8 L/min q2=(A2q1)/A1 =0.16 L/min V3= q1)/A2=0.2 m/s T2=0.1/0.001=100s T3=0.4/0.075=5.3s 表10允许流速推荐值

管道 吸油管道 压油管道 回油管道 推荐流速/(m/s) 0.5~1.5,一般取1以下 3~6,压力高,管道短,粘度小取大值 1.5~3 由表9可以看出,液压缸在各阶段的实际运动速度符合设计要求。 根据表9的数值,按表10推荐的管道内允许速度取V=4m/s,由式d=4q/()计算得与液压缸无杆腔和有杆腔相连的油管内径分别为

d=4q/()=23.8mm d=4q/()=15.9mm

为了统一规格,按产品样本选取所有管子均为内径20mm、外径28mm的10号冷拔钢管。

.

因篇幅问题不能全部显示,请点此查看更多更全内容